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A COMPACTNESS THEOREM FOR SINGULAR
CARDINALS, FREE ALGEBRAS, WHITEHEAD
PROBLEM AND TRANSVERSALS

BY
SAHARON SHELAH'

ABSTRACT

We prove, in an axiomatic way, a compactness theorem for singular cardinals.
We apply it to prove that, for singular A, every A-free algebra is free; and
similar compactness results for transversals and colouring numbers. For the
general result on free algebras, we develop some filters on S.(A). As an
application we conclude that V = L implies that every Whitehead group is
free.

0. Introduction

Generalizing the compactness theorem is a natural question. Hanf [9] proved
that the generalization ‘“‘a set of sentences in L., which every < k of them
have a model, has a model” usually fails; moreover, the counterexample has
cardinality . Later the various generalizations were classified (by equivalence
and implications), and the theory of large cardinals arose (with notion as «
weakly compact, measurable, compact, supercompact). Gustin asked when
does PT(A,x) hold (PT(A, x) means, that if S is a family of A sets, each of
cardinality < yx, and every subfamily with < A sets has a transversal (see Def.
2.1), then S has a transversal). The question was mentioned by Erdos and
Hajnal [6, 7, problem 42 (C)]. Shelah [25] proved, in fact, that y <A, cf A = R,,
implies PT(A, x). Clearly not PT(N,,N,), and in fact not PT(A,A) (see [22]).
Milner and Shelah [21] proved that, for regular A, not PT(A,y) implies not
PT(A",x), hence not PT(R,,N,). It is clear (see [7], p.279) that S} implies not
PT(A,x"), where

Sy:A,x are regular cardinals, y <A, and there is a
stationary set A C A suchthate € A = cfa = x, and for
any limit § <A, § N A is not a stationary subset of 6.
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Note that, if y < A are regular, A is not weakly compact, and V = L, then S?
holds (for y = N, by [17], for x > N, by a slight strengthening of [17] due to A.
Beler).

Note also that. when xy < A, A weakly compact, then PT(A,x) (see [22]).

Later the author observed that there was a great similarity between the
results just mentioned and the research on the existence of A-free non-A ‘- free
(abelian) groups.

A question on this appeared in [18] and later in [8]. Specker [32] proved
incompactness (i.c. existence) for abelian groups, A = N,.; Higman [14] proved,
for groups, incompactness in N, and compactness in strong limit A, cf A = N,.

Griffith [16] proved the existence of N,.-free non-free abelian groups (whose
cardinality was not necessarily N.). Hill [10] proved the existence of N,-free
non-free abelian groups of cardinality 8,. and proved the compactness result
for A when cf A = N,. Eklof [3], Gregory [15] and the author [26] independently
proved that Sy, implies incompactness in A for abelian groups. Eklof [4] and
Gregory [15] proved, independently, that for abelian groups. incompactness in
A. A regular, implies incompactness in A *, hence proved (independently of Hill)
the incompactness in 8. Mekler [24] generalized those results to groups, except
for the last one. which he proved for 8, only. He also proved again the
compactness result from the model theoretic theorem of Chang [2]: if M, N are
L., -cigenvalent, and of cardinality =A, and c¢fA =N,, then M, N are
isomorphic. Eklof and Mekler [24] proved that if « is a compact cardinal, every
k-free (abelian) group is free. Kueker [20] proved the compactness result for
freeness in any variety for strong limit A of cofinality N,.

This led me to the following conjecture (only the simple cases are given, as x
can be added):

CoNJECTURE A.  The following properties of A are equivalent:
(1) PT(AN,).
(2) If G is a graph with A vertices, and every subgraph of G spanned by
< A vertices has colouring number = N,. then G has colouring number = N,.
(3) If G is a A-free group (i.e. every subgroup of cardinality < A is free),
then G is A "-free.
(4) As (3) for abelian groups.

We shall give here a positive result for singular A for (1)-(4). Hence we have
a complete answer when V = [. (for (2) see [25)).

By [26] (see Fuchs [8] for the group-theoretic information) we can use our
compactness theorem to prove (here we deal with abelian groups):



Vol. 21. 1975 A COMPACTNESS THEOREM 321

THeoreM 0.1. (A) (V = L) Every Whitehead group is free.
(B) The statement **every Whitehead group is free™ is independent of and
consistent with ZFC.

Proor. (A) We prove by induction on A that every Whitehead group A is
A’ -free.

(1) For A =R, the proof is well known (see e.g. [8]).

(2) A regular: as being a Whitehead group is hereditary, and by the
induction hypothesis we can assume |A | = A and A is A-free, the proof in [26]
works.

(3) A singular: as being a Whitehead group is hereditary, and by the
induction hypothesis A is A-free, hence. by Theorem 2.4, A is A -free.

(B) Immediate by [26] and part (A).

Hill [12] proved that A -free abelian groups are A "-free when cf A = N,. Let us
explain his proof. Let A be a A-free group, |A|= x; then we can find an
increasing and continuous sequence of pure subgroups of A,

A,(l <w|). A= U A,‘. |A,|!</\
So A; is free and let I be a basis of A. Choose an increasing and continuous
sequence of pure subgroups of A,

Ali<w), A= AL |A] <A,
so that AN A; is generated by a subset of I. Now choose an increasing and
continuous sequence of pure subgroups of A, B, (i <A), so that | B,.,/B;| =N\,
and B; N Aj is generated by a subset of I (I} a fixed basis of A’). Hill then
proved that B;.,/B, is free. He used his theorems:

() ([14]) If | B|=N,. B an abelian group, B = U, B. B, increasing and
continuous, B; free, and B;. /B, is N,-free, then B is free.

(2) ([11)) If B, is a pure subgroup of B, ., B, is free. then U .. . B, is free.

This proof is an embryonic form of Lemmas 1.8, 1.10 (see below).

SCHEME OF OUR Proor. We first give the axioms, and prove technical
Lemmas 1.1, 1.2. Lemma 1.3 is a generalization of : if A is a A"-free
group,B C A, |B|< A, then there is C, BC C C A, |C|< A, Cis free and A/B
is A "-free. Then we introduce our central notion when A/B is P,(A)-free.
Lemma 1.4 is technical, and Lemmas 1.5, 1.6, 1.7 prove that the notion
P.())-free satisfies (variants of) the axioms VI, V, VII. In 1.8 we prove that, if
A is singular, A/B is A-free, |A|= A, then A/B is P,(cf A)-free for a = A. In
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1.10 we prove that, if A/B is P,..(u)-free, u =N, or @ = w, then A/B is free
and 1.9 proves the main point of 1.10. Lemmas 1.11, 2.1(1), (3)-15) are not really
needed. In Section 2 we apply Section 1 to the cases of conjecture A, and to
free algebras in general. For A-free groups and A-free abelian groups we get
compactness for singular A, To get this result for algebras, we deal in Section 3
with E-freeness for filters E over S.(A) and get that, if rcf A = =2 (e.g. A
strong limit singular or A = N,..), then without Ax I* we get that A-free are
A" -free. Using results from Section 3 in Section 2, we prove that if A is a
A-free algebra, cf A < A, then A is A "-free. We also prove that «k "-freeness of
A (or k-freeness, for limit «) implies L. .-equivalence to a free algebra. This
improves previous results of Mekler [24] (on groups and abelian groups he uses
Ax I*) and Kueker [20] (for general algebras, but from (2¢)*-freeness he
obtains L..,.--equivalence, or assumes « is strong limit). (Notice that his filter
“almost all «”-subalgebras of A is contained in E.(A). Our filters are a
combination of his filters, with the construction of models of saturation in [28]
VII Section 1. Our results are stronger, as our hypotheses look like: the set of
non-free C C A, |C|= « does not belong to the filter.)

Ax I* has a special role, because in some applications we use two settings:
one in which it is satisfied, so we can use 1.8, and one in which it fails but
X1 = No, so it is easier to use 1.10.

In [29] we shall give abstract form to (and strengthen) the theorem on
“A-incompactness implies A "-incompactness”. E.g. we prove it for groups,
and also generally, that V = L implies the equivalence of all our properties. We
prove some independence results disproving conjecture A. It is consistent that
every 2™-free group (or abelian group) is free; and it is also consistent that a
graph has colouring number =N, iff every subgraph with =N, vertices has
colouring number = N,. We shall also put results from Baumgartner {1] into our
scheme, and show the connection with some filters. We also prove in
conjecture A that (1) o (3) < (4",

Our results were announced in [27], [30], [31].

ConJECTURE B. Prove that in 3.8 we cannot omit rcfA = = A
Possibly for @ = w, or @ = w,@w; when N, <2" there is an N.-free not
N..i-free pair of rings.

OPEN PrOBLEM C. What is the situation in conjecture A for A = N..,? It
seems likely that the result is independent.

 We also eliminate AxI*, so also problems B, C are solved.
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OreN ProBLEM D. Are our axioms the right ones (i.e., are there axioms, not
much more complicated, applicable to cases which we cannot include in our
scheme), and what is the situation for chromatic numbers and property B? (See
[6], [7] problem 42.)

OreN ProsLem E. (1) Characterize the varieties which satisfy Ax I* (or
even those for which being free is hereditary).

(2) Characterize the varieties (and the «’s) such that there is a k (even if
V = L) such that any «-free algebra is free.

Consecture F. Prove that for x <[A |, Kueker filters (see e.g. [20]) (for
almost all subsets of A of cardinality k) E.(A), E.(A) are distinct. Similar
problems arise for E%(A), E4(A) and E%(A).

REMARKS AND QUESTIONS. (1) Lemmas 1.5, 1.6, 1.7 say that P,(A) satisfies
(variants of) the Axioms VI, V, VI, respectively, and 1.11, 1.3 are parallel to
Ax III, IV and Ax VII for A-free.

(2) We can generalize the P,(A)-free (and add to it cardinal parameters) by
replacing in Def. 1.2 (3), (iii), (iv), (v) “free”, by “k-free”. Clearly, many
lemmas generalize.

It may be interesting to investigate the generalizations suggested in (1) and
Q).

(3) Clearly, 1.8 gives a much stronger result than the one needed as a
hypothesis in 1.10. This may suggest that our theorem could be strengthened.

(4) Similarly to the incompactness results in [21], [4] and [16], we can show
that P.(N.)-freeness does not imply freeness.

(5) Clearly in 2.1 (and the conclusions) we can replace “‘A-free” by “not E*-
non-free”, for arbitrarily large successors « < A.

(6) The notion of A -free in our paper is weaker than the usual one (hence our
results are stronger).

(7) For abelian groups, because of the theorem in [11], we can weaken the
definition of P.(A)-free, as long as we replace ‘“subgroup” by “a pure
subgroup’’.

(8) In Section 2, when we deal with free algebras, we can replace “T a set of
identities” by “T" a set of universal Horn sentences” (even for sentences in
L, w; i.e., members of T have the form

(YY) [Air(¥) = o0:(F)—> 7(¥) = a(¥)].
Hence our treatment is not less general than that of Kueker [20].?

@ But this free algebra is also the free algebra for some set of identities, so no generality is

gained (remarked by M. Rubin).
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(9) Kueker (e.g. [20]) introduces a filter on S.(A); in Section 3 we add
several others (EX(A), E%X (A), E% (A)). We can easily suggest more. A better
understanding of their interrelations, and relations with < ,,, is desirable,
conjecture F is just an example.

It seems that the filters in Section 3 can be better understood as projections of
filters on sets of sequences of members of S.(A). E.g., let for 6§ <«*

SE(A)={(Ai:i < 8): A € S.(A): A increasing and continuous}
and for any function

g: U Si(A)—>S.(A)

Si(A.g)={(Ai:i<8)ESIA)g(A:]=i)C A}

The sets S2(A,g) generate a filter over S2(A).

(10) In Section 3 we investigate E-freeness, and “not E-non-freeness”, in
order to get results on A-freeness. In may be interesting to investigate these
notions, and their interrelations (e.g. does E,-freeness imply E,-freeness), for
their own sake. In this context, we can seek improvements of 3.7, 2.5, 2.6.

(11) It is easy to prove that an algebra (with countable language) which is
L..-free is N,-free, for a suitable M.

Also, if A = U .., A, each A, is free, A; /A is free if i is a successor or
cf i < u (see Section 2 for terminology), then A is L., )-free (i.e. equivalent
to a free one, in the logic with the quantifiers (---(VX:) (3Y:)-- )i, where
a<p (X,Y: of length <A,A regular) and arbitrary conjunctions. Also the
converse is true, and if e.g. V = L, u = A, u and A are regular, we can find such
A, |A| = A, which is not L., gq-free.

(12) Notice that, by 3.9, if ref A = = A, then the conditions (i), (ii) are
equivalent.

(i) For arbitrarily large successor k < A, A/B is not E;-non-free.
(ii) Forevery x < A thereare «(I) (I = 1,2), k < k(l) < A, such that A/B is
not E:{-non-free.

(13) We can strengthen Section 3 a little and the appropriate part of Section
2, by replacing S, by S..(a)={b Ca:|b|< «}, mainly for regular .

1. The abstract setting

In the following setting U and F are essential, whereas M is for conve-
nience. Let U be a fixed algebra, with y, operations, and F be a set of pairs
(A, B) where A, B are subalgebras of U or & (the empty set). Let x, be such
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that U, F € H(y,) (= the family of sets which are hereditarily of cardinality
< x2) and let M be an expansion of the model (H(x.),€.,=,UF) by =y,
relations and functions, and we assume M has Skolem functions. We say A is
free over B or A/B € F if (A, B) € F. During this section U, F, M, xo. x:. x: are
fixed, hence *'A is free over B is not ambiguous. We assume y, = y,; = y, and
that the functions of U are functions of M.

NotaTion. Let A, B, C, D denote subalgebras of U or empty sets; M, N
will denote elementary submodels of M of cardinality y,. We shall not
distinguish strictly between a model M and its universe | M | and similarly for
U, and in fact also A,---. Let M < N mean M is an elementary submodel of N,
and M < N mean M < N and M € N. For a subset V of U, cl V is the closure
of V to @ or a subalgebra of U. We shall usually write U A, instead of
ct(U .A).

ReMark. To strengthen his intuition the reader may think of an example:
abelian groups or transversals. For abelian groups A/B € F will mean
cl(A U B)/B is a free abelian group; and the reader may read the proof that the
axioms hold (in Section 2) immediately after reading the axioms.

ReMaRK.  The theorems using Ax I* will be marked by a star *.

SET OF Axioms. Ax 1*. If A is free over B and B € N, then A N N s free
over B.

AxIl. Aisfreeover Biff A U Bis free over B; and always B is free over B.

Ax 1I1. If A is free over B, and B is free over C, where A D B D C, then A is
free over C.

Ax IV. If A = U, A, A (i <) increasing and continuous, A, C B and for
[ <j<A, A;/Ai UBisfreeand A is a regular cardinal, then A is free over B.

AX V. Suppose DEM, CCEM(i<a). BCD, ACD. DCC,. and C, is
increasing. If A is free over (CoN M) U B and C; N M is free over (CoN M)U D
for i <a, then A is free over (U ,..C)NM]UB."”

RemarK. Instead of D C C, we can require M N(D — Co) C B (just use
C U D instead of C;). We shall use this version freely.

Ax VL. If A is free over B U C, and {A,B,C}C N, then A N N is free over
(BON)UC.

Ax VII. If Ais free over B, and {A.B} C N, then A is free over (A N N) U B.

It scems better to replace “C, N M is free over (CoNMYU D™ by “C,/C, is free”.
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Cramm 1.1. If Ai(i <a) is increasing and continuous, A, is free over B, and
Ai., is free over A, U B (for i <a), then U ... A is free over B.

Proor. By induction on a; for @ =0, U ;.. A, = J, hence the conclusion
follows by Ax IL. If @ = 1, then U ... A; = A,, so the conclusion is one of the
hypotheses. If « = 8 + 1, B a limit ordinal, then U ... A, = U ;A (by the
continuity of A;), so the conclusion follows by the induction hypothesis. If
a=B+2, then A; = U ..., A is free over B by the induction hypothesis,
and Az.,= U ... A is free over A, UB by a hypothesis of the theorem,
hence, by Ax III, our conclusion holds. We are left with the case a a limit
ordinal, so A =cf « is a regular cardinal, and we can choose an increasing
continuous sequence (i) (i < A) whose limitis a, 8(0)=0.S0 A = U ;., Asq),
Ap is increasing and continuous; by the induction hypothesis, Az, is free over
AgiyU B for i <j<A.By applying Ax IV (to A}, where A} =T, Ali = Apy U
B) we obtain our conclusion.

DeriniTioN 1.1, (1) A is A-free over B if A >y, and |[N||<A, A EN,
B € N implies A N N is free over B.
(2) A is weakly A-free over B if A > x,, and for any N, | N||< A, there is
an M, |[M| <A, N<M, ANM is free over B.
(3) We also use the expression “A/B is (weakly) A-free”.

CramM 1.2. (1)* A/B is A-free iff A/B is weakly A-free.

(2)* If AIB is A-free, BE N, |N| <A, then A N N/B is free.

(3) ForA =x,0reven A Z|A|", A/B is free iff it is A-free iff it is weakly
A-free.

@) IfA = A:>x,, and A/B is A,-free, then A|B is A,-free, hence weakly
As-free. Also A-weakly free implies X,-weakly free.

(5)* If Ai (i < 8) isincreasing,cf 8 = A, A, is A-free over B, then U ,_, A is
A-free over B.

6) If Ais free over BUC, and {A, B, C}C N < M, then A N\ M is free
over (ANN)U(BNM)UC.

(D) If|A|=A>xi, A= U.,A, A isincreasing and continuous, | A;| <
A, and A is regular, then A/B is free iff there is a closed unbounded set S C A
such that for any i, jE S, i <j, Ai/B and A;]/A; U B are free.

Proof. (1) For the “‘only if”” part choose M, N <M, [M[| <A, {A,B}C M.
Then by the definition of ““A-free”’, A N M/B is free. On the other hand, for the
“if” part, suppose {A,B}C N, [|[N|<A; then for some M, [M| <A, N<M,
and AN M/Bisfree. AsBEN, by AxI*(ANM)NN=AN N is free over
B.
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(2) Choose M, N <M, |M| <A, {A,B}C M;then A N M/B is free by the
definition of “A-free”, so, by Ax I*, (ANM)NN=A NN is free over B.

(3) Trivial.

(4) Immediate.

(5) If BE N, |[N||< A, then for some a <A, (U ;A)N N C A.; hence
(U.isA)N N =A, NN. But by 1.2(2), A, N N/B is free.

{6) By Ax VII, A isfree over (ANN)UBUC AsN<M, ANNEM,
hence, by Ax VI, A N M is free over (ANN)U(BNM)UC.

(7) The “if” part follows by 1.1. For the “only if”’ part assume A/B is free
and choose an increasing and continuous sequence N; (i <A), so that i <j =
N: <N, [N:i]<A, {A,B}YCN,, and AC U...(ANN,). Clearly, S=
{i <A:A NN, = A}isclosed and unbounded, and if i, j € S, i < j, then A;/B is
free by Ax VI and A,;/A, U B is free by 1.2(6).

LemMa 1.3*. If A is A-free over B, A’ C A, and u* < A where u =|A’| + x1.
then there is N such that [N||=p, A’C N,{A’,A,B}C N and A is A-free over
(ANN)UB.

Proor. Suppose there is no such N, and we shall get a contradiction. Define
M, (i < ") by induction on i so that it is increasing by <, and | M, || = p.

Choose M, so that || Mo|| =, A’ U{A", A, B} C M,. If M, is defined for i < 5,
& alimit ordinal, let M, = U ,_,M; (it exists as M, is increasing by < ). Clearly
the induction hypothesis is satisfied.

Suppose M; is defined, and we shall define M,.,. As M, cannot serve as N,
necessarily there is N' such that [N'|< A, M; < N', and A N N' is not free
over (A N M) U B (using Ax I*). Choose N7 such that M, < N?, | N?||= u and
N'ENZ

As A is A-free over B,and B € M,= M, < N',clearly A N N'is free over B,
and as N'E€ N? clearly A N N'€E€ N?; hence, by Ax VII, A N N'is free over
(ANNNONJUB. If ANN'NN? is free over (AN M)UB, then (as
ANMCANN'NN?, by Ax III, we get that ANN' is free over
A NM)UB, contradicting a previous hypothesis. We can conclude that
A NN'NN?is not free over (A N M) U B. Notice that, as M has Skolem
function, | N'| N | N?| is the universe of an elementary submodel of M, so call it
Mi... As [Mi|C|N'|, |M;|C|N?|, clearly M, < M,.,, and as M, € N', N?,
clearly M; € M,.,, so M; < M,,,, hence the induction hypothesis holds.

Now M= U ..M <M, |M]||=p" <A, and of course {A,B}C M, hence
(by Definition 1.1) ANM is free over B. If i<j<u* and
ANM/ANM)UB is free, then, as (ANM)UBEM,.,, by Ax I*,
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(ANM)NM. . =ANM,. is free over (A N M;) U B, contradicting our con-
struction. So for i <j<A. ANM;/(ANM)UB is not free. Noticing
|[ANM|=u<u’, we get a contradiction by 1.2(7).

DerINnITION 1.2, We define when A is P,(A)-free over B (or A/B is
P.(A)-free); where « is an ordinal, A usually a regular cardinal, but sometimes
a limit ordinal. We define by induction on «:

(1) @ =0. Any pair A/B is Ps(A)-free.
(2) o = & a limit ordinal. The pair A/B is P;(A)-free iff for every 8 < a,
A/B is Ps(A)-free.
(3) @ = B+ 1. The pair A/B is P,(A)-free if it has a P;(A)-decomposition.
A Pz(A)-decomposition of A/B is a sequence A; (i < &) such that:
(i) A, is increasing and continuous, U ,.,A; C A and cf & =cf A,
A.CB.
(ii) Fori=j<é, A. is Ps(A)-free over A, UB.
(iii) A is free over U ..;A, UB.
(iv) A:., is free over B (for i < §).
(v) For i<j<§, A,. is free over A;.,.

REMARK. Notice that the definition depends on U and F only (and not on
M).

DeriniTioN 1.3. The P,(A)-decomposition is called standard if 6 = cf A.

Ciamm 14, (1) If A/B is P.(8)-free, y=a, cf 8 =cf 6, then AJIB is
P,(8")-free. The same holds for decompositions.
(2) If A/B has a P,(A)-decomposition, then A|B has a standard P,(A)-
decomposition.

Proor. (1) We prove it by induction on a. For a =0 it is self-evident, and
for a limit it follows by the induction hypothesis and the definition.

For a = B+ 1 let A (i <§,) be a P;(5)-decomposition of A/B, cf 8, = cf é.
Then by the induction hypothesis we see (checking Def. 1.2) that for every
{ =B itisa P;(8')-decomposition of A/B, hence A/B is P,..(8')-free. If y isa
successor, choose ¢ such that { + 1 =y, if y = 0 there is nothing to prove, and
for y limit it should be clear from the definition.

(2) Let Ai(i <8)bea P.(1)-decomposition of A/B. Choose an increasing
continuous sequence of ordinals j(i) (i <cf A) which converge to & so that, for
i successor, j(i) is a successor and j(0)=0. Clearly, A;;,, (i<cfA) is a
P.(\)-decomposition (check Def. 1.2), hence a standard one.
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Lemma 1.5. If A/BUC is P,(A)-free (A a regular cardinal) and
{A,B,C,A,a}UaCN and ANN is an initial segment of A, then
ANN/BNN)UC is P,(8*)-free where %=X NN =the order type of
A N N = the first ordinal not in N.

Proor. By induction on a;
a = 0: There is nothing to prove.
a limit: Immediate, by the induction hypothesis.
a =pB+1:Let A; (i <A)be astandard P,(A)-decomposition of A/B such
that (A;:i <A)€E N (clearly it exists as N < M). Clearly, (A, N N:i < 8*) is
increasing, continuous and of length of cofinality cf §* and

U ANN)CANN, A\(NNC(BNN)UC,

i<8*
hence (i) from Definition 1.2(3) holds. For (ii) use the induction hypothesis. As
for (iv), {Ai.,B,C}CN, so, as A /BUC is free, by Ax VI also
AN N/(BNN)UC is free. We can prove (v) similarly. As for (iii), notice
that (A, — A;)) N N# O implies i € N, hence

U (A.-nN)=(U A.-)ON,

i<8* i<A
so (iii) also is easy by Ax VI.

LemMa 1.6. Suppose DEM, CGEM (i<y)and BCD, ACD, DCC,,
and C; is increasing, A a regular cardinal.

If A is P.(\)-free over (CoN M) U B and C, N M is free over (CoN M) U D,
then A is P,(\)-free over (U ..,C,N M)U B.

RemArRK. We can replace the demand D C C, by M N (D — Cy) C B (just
replace C, by C; U D). We shall use this remark freely.

Proor. We shall prove by induction on «;
a =0: The conclusion says nothing.
a limit: The conclusion follows by the induction hypothesis.
a=pB+1: Let A (i <A) be a standard Ps(A)-decomposition of A /(C,N
M)UB, and we shall prove that it is also a Ps(A)-decomposition of
Al(U ,,C. N M)UB. We check the conditions of Definition 1.2(3).
Condition (i) is obvious. Let i <j <A, j a successor, then A, is Ps(1)-free
over A; U(CoN M) U B. By the induction hypothesis with A;, A; U B replacing
A, B, respectively, we get that A, is Ps(A)-free over A, U[ U ..,C; N M]UB,
hence condition (ii) holds.
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By the choice of A; (i <A), A is free over U .., A, U(CoN M) U B, so by
Ax V (with U ..,A UB replacing B). A is free over U,.,A U
(U.<,C: N M) U B, hence condition (iii) holds.

Conditions (iv) and (v) can be proved similarly.

LemMa 1.7. Suppose A is regular, A > y,.and a UA U{A,B,a,A}C N. If A
is P,(A)-free over B, then A is P,(A)-free over (A N N)UB.

Proor. By induction on a;
a =0 or o limit: Immediate.
a=p0+1:Let(Ai:i <A)E N be a P;(A)-decomposition of A/B, and we

shall show that it is a Py(A)-decomposition of A/(A N N)U B. As A C N, for
each i <A, A;EN.

Let us check the conditions of Def. 1.2(3).

Condition (i) is immediate. As {A,B,U,.,A}CN and A/U,.,A; UB is
free, by Ax VII A is free over (A N N)U U, ., A; U B, so condition (iii) holds.

For i <A, Ai.\/B is free, A;., € N, hence, by Ax VII, A..,/J(A;..,NN)UB is
free. Now for j > i, A;.\/A.., U B is free, hence, by Ax VI. A;,, N N/A,., U B is
free. So we can apply Ax V with N, Ai._,, B, Ai, U B.A, Ai.; (L <A) for M, A,
B, D, y, C,({ < v), respectively (notice that A..,, B, A;;.;., € N). We get that
A;., is free over

(AyziA,.,ﬁN)UB =<U ANN)UB.

Now clearly A/U..,A UB is free, hence, by Ax VI. ANN]/
[Ui<xAiNNJUB is free. Now apply again Ax V with A..,. B, A..,UB, 2.
(U .iciA.A)for A, B, D, v,(C.:i < y), respectively. Hence A..,/(A NN)UB
is free, so condition (iv) holds.

The proof of condition (v) is similar, and also the proof of (ii)—using 1.6
instead of Ax V.

TueoreM 1.8. (D*If w is a singular cardinal. p > x,, cf w = A, and A is
u-free over B, |A|= p, then A/B is P,(A)-free for every a = p.

(2) Ifpisas above.|A|= p; and for every N,[[N| < u. there is M, N < M,
[M| < w such that A is u-free over (A N M)U B; and A N M/B is free, then
A/B is P.(A)-free for every a < p.

(3) Suppose that u is as above, |A|=pu, A/B is u-free; and there are
N; (i <X) such that A U{A.B}C Ny, i<j=> N; <N, and for limit § <A,
N, =U..sN, and |N:|<pu and A Cc U, N.

Suppose also that A[(ANN;)UB is u-free or for every i<j <A,
ANN.../Band ANN; /(AN N..,)U B are free. Then A/B is P.(A)-free for
every a = .
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Proor. (1), (2) We prove by induction on «;

a =0 or a limit: For « = 0 we have nothing to prove, and for a limit the
proof follows by the induction hypothesis.
a=B+1:Let A ={qg;:j<pu}, p ==ic\ i, p increasing, w; < u.

Define by induction on i <A, a model N; so that |N;||<u,j<i=> N;<N.
For i =0, choose any N,, | No|| < i, A U{A, B}C N,. For limit i, N, = U o, N
(exists by the induction hypothesis, which clearly continues to hold, and
IN|<wp asi<A=cfpu)

If N; is defined, choose Ni., so that Ni < Ni,,,{a;:j < i} € Nisr, | Newll <
and A is p-free over (A N N.,,) U B (possible in (1) by 1.3, in (2) by an
assumption).

We shall prove that (A N N;:i <A) is a Ps(A)-decomposition of A/B.
Denote A; = A N N, and let us check the conditions of Def. 1.2(3).

Condition (i) is trivially true, and condition (iii) holds by Ax II as

A={a:i<u}= L_JA {a:i<w}C L_{ (ANN.,)= UA A C L<JA A, UB.
Also condition (iv) holds (by Def. 1.1). By the choice of N..;, A/(A N N;,)UB
is u-free, and, for j>i+1, {A,B,Ni.JCN, hence, by Def. 1.1,
AN N;/(ANN.,)UB is free, so condition (v) holds.

Thus only condition (ii) is left; let i <j <A, j successor, so N; <N, and
{A,B}C NoC N, hence, by 1.7 and the induction hypothesis (= A/B is
Py (A)-free),

A(ANN)YUB is Pg(A)-free,
hence, by 1.5 (noting N; € N;, hence A N N, € N;),
(ANN,;) is Ps(A)-free over [(ANN)NN;JUB=(ANN;)UB,
so we prove condition (ii).

(3) We can prove it similarly.

Lemma 1.9. Suppose a U{A,a,A,B,C}C Ny, No< N, A >y, A regular,
N.NA =8 <A, |N|=]8|>A|A|=A and cf 6, = w.

IfAis P,..(A)-free over B U C, then A N N, is P, (cf 8,)-free over (A N Npy) U
(BNN)UC.

Proor. We prove by induction on «;
a =0 or a limit: Immediate.
a=8+1:Let (A;:i <A)E N, be a P,.z(A)-decomposition of A/B UC,
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and we shall prove that Ai= A, N N, (i < 8,) is a P;(cf 8,)-decomposition of
ANNJJANNJUBNN)UC.

Condition (i) follows immediately, and for condition (ii) use the induction
hypothesis: for i <j < &, j a successor, {A;, A;} C N, so use our theorem with
B, A;, A; U B, C, Ny, N, instead of e, A, B, C, Ny, N, respectively. We get that

AiNNJA N N)UANN)U(BNN)IUC

is Pa(cf 8,)-free.

Now we use Lemma 1.6, with B8, cf 80, No, A, "N N,,(AANN)U(BNN)UC,
A UBUG, 60, {Aj.;: L <8y for a,A,M,A B, D, v,(C;:{<v), respectively
(notice that j <8, ¢ <8, > j+ ¢ <8 the assumption, A/(CoN M)URB is
P.(X)-free, corresponds to the statement above; and to “C: N M/(CoNMYUD
is free”, corresponds “A ;... N No/(A; N No) U B U C is free”, which holds by
Ax VI, because {A;.;... A, B,C}C Ny and A,,;./A;UBUC is free by Df.
1.2(3) as j is a successor). So we get that A, N N, is Ps(cf 8,)-free over

(‘g Ajegr N No) U(A, N Ny)U(BNN)UC
Notice that
U A= U A, and U A NNo= U A, N No.

{<8g {<8p {<6p (<A

Using 1.6 with B, ¢f 8, A, NN, (ANN)UBNN)UC, A;UBUC, 2,
(U <. An A), Nofora, A, A, B, D, v, (C;: { < ¥), M, respectively, we get that
A; N N, is Pg(cf 8)-free over

(ANNJUANNIUBNON)UCH
=(ANN)UANN)UBNN)UC(CY,

so condition (ii) holds.

The proof of conditions (iv) and (v) is similar, using Ax V instead of Lemma
1.6.

So we are left with condition (iii) and we have to prove that A N N, is free

over
( U A nN.)U(A AN,)UBNN)UC.
i<8p
We will rely on the hypothesis cf §, =N,

First we prove that, if A*, B*, C*€ N,, A*/B*U C* is P,(A)-free, then
A*N N, is free over (A*NN)U(B*NN)UC*. Let (A*:i<A)E N, be a
Py(A)-decomposition of A*/B*¥U C*, and choose j(n)< 8, j(n)<j(n+1),
6, = U,.q,j(n), j(n + 1) successor, j(0)=0. By Def. 1.2(3), (iii), (iv), (v),
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A¥/ L({ A¥UB*UC* and A*,.,/A*.,UB*UC*
are free. Hence, by Ax VI, A*N N, is free over
(U atnNJuBaNyuCH
and A*..,N N, is free over

(A¥,,NN)U(B*N N)UC*.
By 1.1 it follows that A* N N, is free over (B*N N,)) U C*, as

U A*NN,= U A*NN,= U AmNN,.

i<A i<8, n<w
Now we return to (iii). Choose j,, 80 = ju < ju.1 < 8y, jo = 8o, j.- iS a SUccessor,
U.culn = 8,5 denote A’ = U, A; and notice A'N'N, = A;,, "N, fore =1, 2.
As (Ai:i<A) is a P.g(A)-decomposition of A/B, A;n/AUBUC is
P,.g(A)-free, hence, by 1.4 (1), it is P,(A)-free, hence, by the previous
observation,

A N NJ(Ajo N NY)UBNN)YUC
is free. Clearly,

Ai(n’Z)/Aj(nﬁlj U B U C

1s free, hence
Ai(nr?)mNI/(Aj(nol)m NI)U(B mN])UC

is free. Hence, by Claim 1.1,

U A N NJ(Ajio "NNY)UBNN)UC

is free. Notice that
U AimﬂM:Aa.ﬂN.:A’ﬂN.,

hence A'N N, is free over (A, "N,)U(BNN)UC

Now weapply Ax Vwith No,A'UB U C, A;, N N,.(A, " N)U(BNN)UC,
2, (A", A) for M, D. A, B. v, (C:i <), respectively.

Let us check each hypothesis of Ax V. Firstly, 4;, N N, is free over

(A'NNJU[(AL,NN)U(BNN)UC]

by the previous result, as
As,ﬂleA'le. and A'ﬂNo=A&,ﬂNnQA&,ﬂN..
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Secondly,
ANNJA'NNHUA'"UBUC)

is free by Ax VI, as {A,A’,B.C}C N, and A is free over
A'UBUC=A"UA'UBUQCQ).
Hence, we can conclude that A’ N N, = A; N N, is free over
(ANNJU[(A,NNYU(BNN)UCI.

Now A/A'UB U C is free, and {A.A’. B,C}C N, < N,, hence, by 1.2(6),
A N N, is free over

(ANNJUMA'NN)IUBNN)UC.

Combining this with the previous result, we get by Ax Iil that A N N, is free
over

(A, N"N)U(ANNHU(BNN)UC.
so we prove condition (iii), hence 1.9.

THEOREM 1.10. Suppose y, = Ry, or there is { < x| such that (*) for every
regular p = xo. if A/Bis P(u) free and | A | = x.. then A/ B is free. If x, = R, let
=1

(A) Then for every ordinal a, every P,.,(R,)-free pair is free.
B) Iftzw Aa=00r{<w A a = w. then every P,.,(A)-free pair is free.

Proor. If x, = N,. the condition (*) above is satisfied; because u =R, (so
uw =N and (A,:n <w) is a standard P,(A)-decomposition of B, A,C B,
A.../A, U B are free, hence, by 1.1, A/B is free.

Now we prove 1.10 by induction on a, and for a fixed «. by induction
uw =|A]|,and letin (A) A = N,. and for fixed a and u. we prove by induction on
A.

Case I. |A|=p>A+ x,. Choose an increasing (by <) and continuous
sequence N(i<pu) so that [[N]<up. ACU...N. N EN., and
AU{NMABICN. By 1.5, AN No/B is P,_.(A)-free, and by 1.7, A is P;..(A)-
free over (A N N,) U B, hence, by 1.5, (A N N..)) is P,..(A)-free over (A N
N:)U B. By the induction hypothesis. A N No/B and ANN_,J(ANN)YUB
are free (for i < A), hence, by 1.1, A/B is free.

Case II. |A|=p <A Let (A;:i<A) be a P(A)-decomposition of A/B,
hence, for some i(0)< A, A= U -2 A 50 A/Aio.. UB and A ,q./B are
free, A.m-1 C A, hence, by Ax III, A/B is free.
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CaseIll. (a) |A|=pu = A, u = xo.Our conclusion follows by (*) (if xo = Na,
we have proved (), otherwise we have assumed it).

(b) |A|=p = A, A singular. In this case A/B is also P;..(cf A)-free (by
1.4(1)); hence our conclusion follows by the induction hypothesis.

(c) |A|=p = A, A regular > y,. Choose N;(i <A) so that N < N,., < M,
N= UGN, INI=lil" xi<A{A LA BICN, AC U ouNyand A NN is
an initial segment of A of cardinality | N;||, such that, for successor i, it has
cofinality N.

Notice that, if BEN, 1+B={+a, then, by 1.5, ANN,/B is P, (cf
(A N N;))-free [as A/B is P,.z(A)-free, B =1+ Bland by 1.9 A N N,.,is Py(cf
(A N N;))-free over (ANN,)UB [as A/B is P..g(A)-free]l. Hence, by the
induction hypothesis and 1.2, A N N/B, A N N,../(ANN;)UB are free, so,
by 1.1, A/B is free.

Lemma 1.11* If A; (i < a) is increasing and continuous, Ao/ B is A-free and
Ai.i/Ai UB is A-free, then U ,_, A/B is A-free.

Proor. As in 1.1, it suffices to prove the parallels of Ax III and Ax IV.
() If CCBCA and A/B and B/C are A-free, then A/C is A-free.

For suppose C € N, [ N[ < A, choose M, [M||<A, N<M, A, B, CE M. So
by the definition, A N M is free over B. Choose M\, [|[M,||< A, M < M,; then by
Ax VI, ANM)NM,=ANM is free over (BNM)UC; and as B/C is
A-free, BN M, is free over C. So, by Ax I, (A N MYU(B N M,) is free over
C. As CeM, also

(ANMYUBNM))INM=ANM

is free over C; so we finish by 1.2 (1).
(2) If A; (i <) is increasing and continuous, u regular, A, C B. and for
i<j<upu, Aj/A; UB is A-free, then U ... A://B is A-free.

Clearly, it suffices to prove this for regular A > y,. If u = A, the conclusion
holds by 1.2 (5), so we can assume g < Ao. If [N]|< A, B € N, choose | M| < A
so that A€M (for i<wu). Then, by Ax VI, for i<j<y,
(AANMANMYUB is free, and A,C B.” Hence, by Claim I.1,
(U ... A)NM =U,..(A; N M)isfree over B, so clearly (2) holds by 1.2 (1).

2. Applications

Main THEOREM 2.1. Suppose U, F, A, B are given (as in Section 1) and
(1) |A|=A, A is singular;

“ Seemingly incorrect, but the lemma is true under stronger Axioms of [29].
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(2) There are M, x,, x-< A such that
{a) Ax I-Ax VII are satisfied and A/B is A-free or
B) Ax II-Ax VII are satisfied and the assumption of 1.8 (2) or (3) holds ;
(3) There are M', x\, x> such that x| = R, or for some { <(x* condition
(*) of 1.10 holds, and Ax lI-Ax VII are satisfied;
Then A /B is free.

Proor. Using assumptions (1) and (2), we get by 1.8 that A/B is P, (cf
A)-free for any a = A. Remembering that this notion depends on U, F only, we
can use 1.10 (in the context of M’') and we get that A/B is free.

Transversals

DeriNniTION 2.1, A transversal of a family S of sets, in a one-to-one choice
function, i.e. A ES—>f(a)E S, a#b €S > f(a)# f(b).

Let S be a family of subsets of V, each of cardinality =< y,. Assume without
loss of generality that SNV =J,andlet U =S U V,and A/B € F if thereis a
one-to-one choice function of (A — B)N S, whose range is C(A—B)N V.
(Notice that V is an algebra in a trivial way: it has no operations.)

Let V, S € H(x.).and M' = (H(x:), €.V,S)and M*=(M'i).,. Itis easy
to check that all the assumptions of 2.1 hold. E.g., Ax I* holds for M * because
if a€ S, a€ ANN, then a CN, hence, if f is the choice function showing
A/B is free, f | AN N shows A N N/B is free. Hence, clearly,

Concrusion 2.2, If |S|= A > xi, A singular, S a family of sets of cardinal-
ity = x,and every S’ C S.!S'| < A has a transversal, then S has a transversal.

Colouring numbers

DermviTion 2.2, A graph G has colouring number = A if there is a well
ordering < of its set of vertices V(G) so that

[{b <a:b€ V(G). (a,b)E E(G)}|< A

for each a € V(G), where E(G) is the set of edges of G.
Let xo be a cardinal, G a graph, U = V(G)., and A/B € F if for every
a € A-B,

{b € B:(a.b) € E(G)}| < xo.

and the restriction of G to A — B has colouring number = y,. Let G € H(x.),
M =(H(x»), € G. i), Notice that, if | A| = x,, and for every a € A,

|{b € B:(a,b) € E(G)}| < xo.
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then A/B is free (choose any ordering of A — B of order-type = y,). Hence, if
|A| = yoand A/B is P,(u)-free for some u, then A/B is free (by the way, this
implies that if A, (i < a.cf a < y;) is increasing, A,/B is free, then U,.. A;/B
is free).

So, by 2.1,

ConcurusioN 2.3. If G is a graph of cardinality A, A singular, A > y,, and
every subgroup of cardinality < A has colouring number = y,, then G has
colouring number = y,.

Free algebras

Let U be an algebra with y, operators, which satisfies a set I' of identities
(see 0(8)). We say that I C U is free over a subalgebra A of U, if for any
algebra U’ (of the same similarity type) which satisfies I', A C U’, and function
f: 1> U’. f can be extended to a homomorphism g:cl (A U I)—> U’, g is the
identity over A. For simplicity let yo = N,.

We call an algebra A A-free (for a fixed I') if any subalgebra of it of
cardinality < A is free (this does not coincide with our definition in Section 1.
but is stronger, so our result surely holds). We say I is a free base of A/B (A, B
are & or subalgebras of U)if I is free over Bandcl(A UB)=cl(B UI). Let

F = {A/B: thereis a free base of A/B}.

We shall prove now that. for any appropriate M, x.. x.. axioms II-VIII are
satisfied.

Ax II: Trivial (the free basis of B/B is the empty set).

Ax III: Let I, J be free bases of A/B, B/C respectively. Then I UJ is a
free basic of A/B.

Ax IV: Let I, be a free basis of A,.//A, U B, then U,_, I, is a free basis
of A/B.

Ax V: Let [ be a free basis of A/(CoN M) U B and suppose I is not a free
basis of A/(U,..C N"M)UB.

Clearly.

cl 1u(u C,nM)uB]=c1[A u(u C,-ﬂM)UBJ,

i<a

i«

hence I is not free over (U .., C; N M) U B, hence, for some i. I is not free
over (CNM)UB. Let J beafreebasisof CNM/C,NM. AsJCC NMis
free over CoN M, it is free over C,, hence over (Co,N M)UD. So J is a free
basis of C: " M/(C,N M) U D and, as

ITCcH{A U(CoNMYUB)Ccl((Con MYU D),
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clearly I U J is free over (CoN M) U B, hence I is free over

cl[JU(CoNn MYUBIDcl[(C.NM)UB],
a contradiction.
Ax VI: There should be I € N which is a free basis of A/B U C. So for
every aEAUBUC, a€N, there are a, EINN, bb€EBNN, cc ECNN
and term 7 so that a = t(a,, -, b, -+, c\,---). Hence

{ANN)UBNANIVUICNN)I=cdINN)UBNNYU(CNN).

It is also clear that I N N is free over B U C, hence also over (BN N)U C. So
IN N is a free basis of ANN/{(BNN)UC.

Ax VII: There is I € N such that I is a free basis of A/B. Let J=
I — I N N; then clearly

cl(AUB)=cl(JUB)=cl(JUUNN)UB)=cl(JU(ANN)UB)

and J is free over
cd(INN)UB)=cl(({A NN)UB).

So J is a free basis of A over
cd((INNYUB)=cl((ANN)UB).

So J is a free basis of A/(A N N)UB.
Clearly for abelian groups Ax I* holds, hence

ConcrusioN 2.4, If A is a A-free abelian group of cardinality A, A singular
(so T is the set of identities of abelian groups), then A is free.

Do groups satisfy Ax [*?

For abelian groups, A is free over B iff the quotient group A/B is free, so
there are no problems. However, checking the proof of a somewhat more
general theorem, appearing in [19], Vol. Il p. 17, we find easily that groups
satisfy Ax I*.

Unfortunately, e.g. not every subring of a free ring is free. It is not known to
me whether 2.1 (2) (B) (o) may hold. This motivates Section 3, so now we
assume knowledge of it. By 3.8, if A is A-free, A regular, |A|=A, and
rcf A = = A, then A is free, so e.g. for A strong limit this holds. But using the
particular properties of A-free algebras we can get a better result which,
however, seemingly does not generalize to pairs. Let from now on B = .

DerinITION 2.3, P.(A, C) means that |C| =k, k = x,, C is free and there is
a free algebra with «* generators C', CC C’, C'/C is free and (A, a).ecc,
(C',a)aec are L.,..-equivalent (see e.g. [2] on L..,).
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DEeFiNiTION 2.4. A is L..-free if it is L..-equivalent to the free algebra
with « generators (see e.g. [2]).

Lemma 2.5. (A) Let p=«, xo<x <|A|, and R(A,E%)=, then A is
L....-free.
B) If o=« <k <|A|, A is L..-free, then A is L..,-free.
(C) If A is L...-free, xo<x(1)<k <|A|, k(1) is regular, then

{C € Scf(A): C<.xayA}E EXB(A),

where < ..q, means being an L .. -elementary submodel.
(D) If xo=xk()<k <|A], C <., PufA,Co), CoCC, C is free, then
C/Co is free.

Proor. Let D, be the free algebra with «-generators.

(A) Let W be the set of functions f such that: f is an isomorphism from a
subalgebra A, of A onto a subalgebra D, of D.-, D, and D.+/D, free, | A,| =«
and R% (A,) = . (We first assume R% =)

By well known results, it suffices to prove that: for any fE W,A, C A,
D,CD,+,|A|+|D,| =k, there is f' € W extending f such that A, CDom f,
D,CRange f'. For this it suffices to prove that, if |As|= K, R% (Ag) =,
AcC A CA,|A =« thenforsome A,C A, A, C As, R% (A;) = and A,/A,is
free, and generated by «-generators. Except for “‘generated by «-generators”,
this holds by 3.4. Using 3.10 and R* instead, we get our requirements easily.

(B) Well known.

(C) Clearly, for every C € S.(A) there is C'€ S.(A), CC C' and
C’' < ..uA (there is a sentence in L., saying that, and D, satisfies it). It is also
easy to see that if C; <..wA, (i <«(1)), C: increasing, then U,C, <..nA;
hence our conclusion,is easy.

(D) We can assume A = C. We define by induction on n < w sets C, such
that [C.| = k(1), Ca C Cus1, Pca(A, C2n), Cons2l Csn is free and Ciney = A NN,
N, <M, A€ N, <N,,,. This is easy, and A/ U ,..,C, is free by Ax VII,
U,<.C./C, is free by 1.1, hence, by Ax III, A/C, is free.

THEOREM 2.6. (A) IfA > x, is singular, A is A-free, then, for arbitrarily large
k <A, A is not E*-non-free.
(B) If o=k <A =]|A|, A is not E%*-non-free, then A is L...+-equivalent
to the free algebra with k*-generators.
(O) If A is L...+-equivalent to the free algebra with «*-generators for every
K < Ko, then A is L. .,-equivalent to the free algebra with k.-generators.
(D) If |A|= A, singular and A is L. -free, then A is free.
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Remark. Note that each part gives in fact, as a conclusion, the hypothesis
of the next part.

ProoF. (A) Trivial.

(B) By 3.4 and 2.5 (A).

(C) Let W be the set of functions f such that: f is an isomorphism from
A'CA onto D'CD,, |A'|<ke D'and D,/D" are free, and P.(A, A') where
Kk =]A"].

Now, forevery f € W,and A’ C A,| A’| < ko, choose k < ko, |[Dom fU A?| <
k,and A’<.,A, |A'|=«, P.(A,A”) and Dom fUA’C A’ (possible as A is
L..--free). So A’ is free and by 2.5(D) A*/Dom f is free, so we can extend f
to f'€ W, Dom f' = A’. As clearly free basis of A*/Dom f has cardinality «, we
are finished, as in the proof of 2.5(A).

(D) Similar to 3.7, assuming this time P.. (A, C:) for successor i.

ConcrusioN 2.7.  For singular A, any A-free A is A’ -free.
Subalgebras of free algebra
The context here is just as in the preceding sub-section (‘‘free algebras™), i.e.,
we have the same U, xo, x1» x2» M but:
F'={A/B: there is an algebra C (satisfying I'),
A UBCC, C/B is free in the previous sense}

(we have to assume U is quite “big"”).

THeOrReEM 2.8.  All axioms, including Ax 1*, hold, provided the class of
algebras satisfying " has the amalgamation property. Hence for A singular,
A-freeness implies A*-freeness (for pairs).

Generalizing transversals

Like Mirski (23), we can replace transversals by *“independent transversals”
relative to some independence structure satisfying some natural requirement.
We shall need a special case in [29].

THEOREM 2.9. Suppose S ={(Q, P,): i < A}, where |Q:| = xo, P a family of
subsets of Qi, | P.| < xa.

We say S has a transversal if we can choose t; € P, (i < A) which are pairwise
disjoint. If xo+ x,+cf A < A, and every S’ C S, |S’|< A has a transversal, then
S has a transversal.

We leave the proof to the reader.
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3. On “almost all subsets of cardinality «”

Let o denote a regular cardinal, y, =« < A. We return to the setting of
Section 1, and let A, B be fixed, |[A]|=A.

DerFiNTiON 3.1 Forany set a and k =|a|,let S.(a)={b:b Ca,|b|= k).

DerINITION 3.2, (A) An expansion M* of M is called a «x-expansion if it is
an expansion by = « relations and functions, and A, B, i (i = k) are individual
constants of M*.

(B) N. (i <a)isan M*-sequence if it is increasing (by <) and continuous
and for every i <a, (N;:j=i)E N;,, and N, < M*,

(C) Forany « <A (and u =«) let E.(A) [E* (A)] be the filter generated
by the sets A C S.(A) called its generators such that, for some k-expansion
M* of M,

S =8 (MHI[S=S5% (M%)
where
1) S, (M*)={A N U Nii Ni(i<a) isan M*-sequence,

IN =« a<k’, a=xu, where u= cfa} (xu-ordinal multiplication),

2 .5‘:(M*)={A N U Ni:Ni(i<a) is an M*-sequence, a = K[.L}.

DeriniTioN 3.3, E. (A), E% (A) are defined as in Def. 3.2 (C), only replacing
a =kp by cf a =p in (2) and omitting @ = ku in (1). Similarly we define
S.(A), S%(A).

LemMA 3.1. Let p =k <A (u regular).

(A) The filtersE.(A).E%(A),E.(A),E%(A)arenon-trivial (i.e., theempty
set is not in the filter), not principal, and « “-complete. Moreover, the intersec -
tion of any = «x generators includes a generator.

(B) SEE.(A)iff foreveryu =k, SE E%(A),and S € E. (A) iff for every
w=k SEELA).

(C) E.(A)CEY(A), E.(A)CE%(A), E.(A)CE.(A), E*(A)C
EL(A).

(D) If in Def.3.2(C) (2), we replace & = ku by @ = ., we get the same filter.
A similar result holds for E.(A).

(E) The filters depend on A and the cardinal parameters, but not on M*, B.

(F) If the language L* of M* contains only finitely many symbols, except
for the individual constants, M is an expansion of M*, then for any M"
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sequence (N a < ao), if N* is the L*-reduct of N, then (N.:a < ay) is an
M*-sequence.

(G) In Def. 3.2(C), it suffices to take M* as mentioned above; so we need
not distinguish strictly between N < M* and |N|.

Proor: left to the reader. We shall use this lemma freely.

DeriniTION 3.4, (A) For limit cardinal A, let rcf A (revised confinality of A)
be the first (regular) cardinal u such that for some A, < A, for every singular
cardinal A, Ao<A <A Dcf A, <p.

(B) A™* =Zpsucu A’
(C) w==Aaif A, <A implies AT <A,
(D) Let k(1) <k, then « is near k(1) if k(D<pu =k Acf u=x(1)>

c{p=

K K.

LemMMA 3.2, (A) cf A =rcf A=A, and if rcf A = = A, then there is A, < A
such that for (1), «:
A<k(l)<k = k<™ < A implies k is near k(1).

(B) If[N|*'=|N| and N < M, then for every a; € N (j < a) the sequence
(a;:j <a) belongs to M. If a €N, |a|=«, then a C N iff «k CN.
(O If k =k, a<cf 8§, M* is a k-expansion of M, (N;:i <$8) is an
M*-sequence and a; € U, _;N; (j < a), then (g;:j <a)€ U,..N.
(D) Let k(1) <k, « is near x(1), M* a x-expansion of M, (N;:i < 8) an
M*-sequence:
(1) If aC N, |a|=«(1), y is the order type of {k": k(1)< k' =k, cf k' =
k(1)}, then there is a, € N..,.,, a C a,, |a,|= k(1).
(2) Ifa C U.isN, |a|= k(1) <cf 8 [so y (From (1)) divides 81, then there is
a, € Ui N, aCa,, |a| = k().

Proor. (A) Immediate.

(B) As NEM, |[N|e M, hence S, the set of sequences of length a of
members of | N |, belongs to |M|. As(g;:j <a)E S € M,|S|=]||N]|, it suffices
to prove the second phrase (then use it twice:|[N|C|[M| implies |[N||C|M]|.
which implies S C|M ).

Solet N<M, a €N, |a|= k. As the function car, car (a) =|a|, is definable
in M, k =|a|EN, and as M|=|a|= «, also N|=|a| =k, and so a one-to-one
function from k onto a, € N, hence x C|N|iff a CN.

(C) Immediate by (B).

(D) (1) For k22 k(1) let p(k,) be the order type of

{a: k(1) <R, = k3, cf N, = (1)}
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Now we prove by induction on «; «(I)=«,=«, that, if a Ca*, a*€ N,
|a*| = k., then, for some a’ E N, (p = p(k2)),aCa’,]|a'| = k(). If k.= k(1)
this is trivial. If cf k, > (1), there is in N; a one-to-one function f from «, onto
a*, so for some [ <k, aC{f(j):j<i}, and we can use the induction
hypothesis. If u =.cf k, =k (1), thena*= U,..a% a*€ N, [a*|<]a*|. Soby
the induction hypothesis there are a;€ N;., ,, aNa*Ca;Ca*, |a}|=« ().
By (B) (aj:j < u)E N.., (p = p(xs)). hence U,.,a}€ N, is the desired set.
(D) (2) Immediate by (D) (1).

Lemma 3.3, For regular x <A, EI(A) is generated also by the sets
S*¥(M*) (for x.-expansion M* of M, x, < k) where

SH(M* = {A N U Nt N, (i <«)an M*-sequence, and I|N,-||<x}.

Proor. We should prove that every set of the form S5 (M*) includes one of
the form S¥ (M*) and vice versa (M*—a «-expansion of M).

Part 1. ST (M7)C S* (M*), where M' is the expansion of M* by
P={N:N<M* and i(i =«). For every A*€ S:(M") there is an M"-
sequence (Ni: i < §8), such that A*=A N U,.,N’, 8 = k«. Let N, = N, then
(Ni:i <«)is also an M"-sequence and A*=A4 N U,..N.

There is a function g,, definable in M, so that g.(a) (a € M) is a one-to-one
function from |a| onto a. There is a function g, definable in M*, so that for
a <i<k(Nj:j<i)an M*-sequence |N;| =k, g.((N;:j < i), a) depends on «
(N;:j<a) only, has the form (M3: B8 <«), M3 (B <k) is increasing and
continuous, M| <« U,M3 =N, Mz <M* for y<a |M}|C|M5| and
for limit @, M3 = U,., M} and (N;:j < vy)E MJ*' when y <a.

Then N*=U,,..Mj(i<k) is an M*-sequence, [N*|<k, A*=
ANU,.,N* so A*XE S*(M*).

Part II. StT(M")C S:(M*) for appropriate M*. By 3.1 (D) there is a
k-expansion M' such that

S'={Aﬂ U Ni: N (i <k) anM'-sequence, ”Nz”=x}

is a subset of S (M*). Using parametrization, there is a x,-€expansion M of M,
so that all relations, functions and constants of M' are first-order definable in
(M? i)i... Hence S*C S’, where

S?= {A N U NN (i <«)isan M?-sequence,||N:||= x, k C NO}.

i<x
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We can assume that M? has Skolem-functions. Let M* be the expansion of M*
by a function g, so that for N < M?, |N|<«, g(N) is the Skolem-hull of
[N|U«k in M. It suffices to prove that S¥(M")C S°.

So let

A*=AN {J N, N (i<x) an M -sequence, [Ni[<x«.
As N < N..,, «k NN, is strictly increasing, and x CU;.. N, hence N, C
g(NNCU...N, hence U,..N=U,..g(N), hence ANUN =
AN UgE(N). As (Ni:j=i)EN..,, also {(g(N;):j=i)&€ Ni.,, hence
(g (N)):j=i)E g(N,). Clearly g(N;) is increasing and continuous, so we are
finished.

DeriniTioN 3.3. (A) The pair A/B is E-free (E, or E(A), is a filter over a
family of subsets of A} if

{C:Ce€ UE,C/Bisfree}€ E.

(B) We can replace “free” by any other property.
REMARK. Obvious monotonicity results hold.

DeriniTion 3.4, (A) For every w =x <A, CES,(A), A, |A|= A, and B,
and filter E over S, (A ), we define the rank R (C, E) as an ordinal or %, so that
(1) R(C,E)Yza+ 1 iff C/B is free and

{DeS.(A):CCD,D/ICUBisfreeand R(D,E)=Z a}# J mod E.

(2) R(C,E)= 6 (=0 or 6 limit) iff C/B is free and a < & implies
R(C,E) = a (more exactly, we should write R(C, E; A/B)).
(B) R(A/B,E)=sup{R(C,E):C € S,.(A)}.
(C) R{C)=R(C,E¥)and R*=R%A/B)=R(A/B,E%;R% R are defined
similarly.

LeMMA 3.4, Suppose x <A, wu=«x, A[/B is not E%-non-free and
SIEEL(A),S;€E EXA), M* a k-expansion of M.

Then R = =, moreover for every k-expansion M* of M there are C € S, and
DeE S, and N <M* |N|=«suchthatD € N,C=DNNandR% (C) = x.

Proor. If C€E€S.(A), 0=R%(C)<=x, then there is a generator
S(C)E EXA), S(C)= S%(M¥), such that for D € S(C), D/C U B is not free
or RE(D)<R:(C). If C/B is not free or R4E(C)=x, let M¥ be any



Vol. 21, 1975 A COMPACTNESS THEOREM 345

k-expansion of M, and let S;= S% (M?. Let M* be a x-expansion of M,

expanding M*, M*? and having the relations P, P? where
P={(C,N):CES.(A), N<ME |N]| <y},
P,={N:N<M?,

N||<X3}.
As
{DES. (A):D/Bisfree} #Omod E: (A)

and S, € EZ(A) and (by 3.3) S*(M")€ EZ*(A); there is D such that:

(1) D/B is free.

2) DeS..

(B) D=ANU,.-N, N (i<xk’)is an M'-sequence and |N;||=«. so
without loss of generality |N;| = «, « C N.

Let A¥*=DNN,so A*€ N..,andlet N = U, N. Clearly (N,:i <x7)is
also an M*-sequence, hence for each § <« ', (N::i < &) is an M*-sequence,
hence, if « divides 8, cf § = u. then AZE S.. If CE€ N, C € S.(A), then for
every j>i, j<k' there is a model N!<M¥ (Ni|=«, [N;|C|N!| and
N;j € N;.,, hence N C N;.,.

Hence, for any limit ordinal 8, { <& <«~ implies N; < M#*. Clearly
(N;:i <j<«',jlimit)is an M"-sequence, hence it is an M %-sequence; hence,
if i <6 <«7,8islimit, x* divides 8, cf 8 = u, then A% € S(C). As D/B is free,
by 1.2(7) there is a closed unbounded subset of « °, W, such that for i,j € W,
i<j,A*/A*UB is free and A*/B is free. We can assume that each i € W is
divisible by «*. Hence, if i,j € W, i <j,cfj=pu, R4 (A*)<x, then R (A <
R (A¥*) <= (by the definition of S(C)). So, if for some i € W, R* (A*%) < x,
cfip, = p, i, €W, i <iy <i,,, then R% (A*)) is an infinite decreasing sequence
of ordinals, a contradiction. Hence i € W implies R* (A*)=x, Let D=
U.c.-A* andchoose N<M* DEN.NNU,.,-At=A%. 5E W.cf6 = p,
and C = A%. So we are finished.

LemMa 3.5. (A) Ifu =k <A, CES.(A),R4(C)==,5 € E%(A), then for
some DES, CC D, R:(D)=w and D/C U B is free.
(B) The same holds for any filter over S.(A).

Proor. (A) As S.(A) is a set, for some ordinal a,<|S.(A)]*, for no
C€ES.(A)is R4 (C) = ao. We can easily prove that R* (C) = a, iff R% (C) = <.
Using the definition we get our assertion.

(B) The same proof.
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LeMMa 3.6. Suppose p(1)= k(1)< pu =k <A, RE(C) ==, k is near k(1)
and A /B is not E%-non-free. Then A|C U B is not E*%-non-free. moreover the set
of D € S.(A) such that “"D|B is free implies D/C U B is free" belongs to
E% (A).

ReMArk. (1) The lemma holds also when ()= k(1) =u =R, =k <A,
(2) We can replace E%, E*.

Proor. et M* be a x-expansion of M, including C as an individual
constant and (by 3.5 it exists) the function g, so that if R* (C)=x, C,C
C.€S.(A), then C,Cg(C,C\)E S.(A), x=R* (g(C.C,)) and we shall prove
that every D € S% (M*) satisfies our conclusion.

So let (N;:i<8) be an M*-sequence. |N,||=«. « divides & and D =
ANUi N, and let N=U,;N. cf§ = p.

We define M,, C,, by induction on n. so that

(N C,=C, [Col= k(). [M.]=«(D),

) R:(C.) == and C,.,/C,UB is free, and C, C D,
3) M, <M. <M, DeM,,

(4) C.cCDNM,.CG,.,. C.eEM, C, EN.

For n =0 there is no problem. For n + 1, by 3.2 (D) there is a € U,.; N.

DNM,Ca,|a|=«(l). Now let C,., = g(C.,a N A). Now it is easy to define
By 1.1 U,..C./CUB is free, and as U,..M, <M, by Ax VII D is free

over (DNU,M,)UB=U,..C, UB. Hence, by Ax Ill, D/C U B is free.

THEOREM 3.7. Suppose A =|A| is singular, rcf A = = A, and moreover, for
arbitrarily large successors x <A, k" = x and A/B is not E:-non-free, and

(*) of 1.10. Then A/B is free.

ReMArk. The condition refA = = A holds, e.g. if A is strong limit or if
A= Rova

Proor. We can find A <A (i <cfA) such that A; is increasing, and,
denoting k(i) = A%, x(i)*“™ = k(i) and A/B is not E;{-non-free and for i <j,
k(j) is near (i), A; (see 3.2(A)).
By 3.4, for every u = A, R;==. Let A ={a,:i <A}.

Now we define, by induction on i < cf A, sets C; C A and models N; such that
ANN =C, NN< N, for i#0, and

IC.'HI =Aiess R:,-..,(Ci-l) = 3‘3.{013]' </\i}g Ci-i;
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and N, is increasing and continuous, and for j <i, C;../Ci-, U B is free.

For i =0, let Co=0 and for limit 8§ <cfA, Ny=U..4N, Co=U, C.
Suppose N, C, is defined and let us define C;,), Ni.,. Let C'= C: U{a;: i < A};
by 3.6,

Se={DES.i.,(A):foranyj<i D/B free->D/C;.,U B is free} € EXii1)(A)

L{{RN}]

(because E . 1(A)is «(i + 1) -complete). Let

M*=(M,(N;:j <i), [)isa.
and
Si=SenN{D:D=ANNN<M*|N|=«(i+1)},

so clearly S, € E<iZ1(A).
Now apply 3.4 (A,., stands for «), so there exists D€ S,, C. N such that

C=DNNDENR(C)=2o, N<M*

AsDeES,.D=ANN’', N <M* Clearly, for j<i. C;.,,€ N,and as D € S,,
D/C;., U B 1s free. hence C/C,.,U B is free.

Let N,,=NNON', then N,, < M*, hence N < N,,, (N,:j=i)EN,,,, and
C = A N N, so all our demands are satisfied.

So A =U,C, G is increasing and continuous, Co=, C.../B is free (as
R2(C,...)==)and forj <i, C../C;..UB is free. So A/B is P,(cf A)-free, and,
as in 1.8, we can prove by induction on a = A that it is P,(cf A)-free. By 1.10,
A/B is free.

CoNcrusioN 3.8. If |A|= A, A is singular, rcf A = = A, and A/B is A-free,
then A[B is free provided that for arbitrarily large x < A, k“™'* = .

We can notice also

LemMa 39. Ifcisnearx(),u(N=2xk(N)<pu =k <A k“*"=xand A/Bis

E*{)-non-free, then A|B is E*%-non-free.

Proor. Let M* be a x-expansion of M so that whenever N, (i <é =p'=
u(1)) are as in Def. 3.2(C), (A NU,.,N,)/B is not free (see 3.1(D)). Let
P={N:N<M* |IN|=«} and it suffices to prove that for any A*=
ANU,sN* N* 8 (M* P) as in Def. 3.2(C), A*/B is not free; let
N*=U,.,N* We define M:, e=1, 2, by induction on i<, so that
M (i <) is increasing and continuous, |M:||=«(1), M;< N*, N*E Mi<
M (MLjsiheM! . ,and M NACMINACM! NA.

For defining M|., use 3.2(C) and 3.2(B).

By the choice of M*, AN U, .. M!/B is not free. But if A*/B is free, as
N*e U, Mi<M', A*e U, M? hence, by Ax VI, A*nU.., MYB is
free. But A*N U, Mi=A N U, M a contradiction.
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DeriniTioN 3.5. E%(A) is the filter over S.(A) generated by the sets
SHM*), M* a x-extension of M, where

SHA*)={D:(Ni:i<k') an M¥*-sequence,
IN.||= «, and there is an M*-sequence

(M,.l<8>, (N,:i<K.>€M0. CflS::[J,.
MN U N =N.u. and D=AN {J N,.
i CA

& divisible by «}.

LemMa 3.10. If k' <A, p =, A/B is not EZ--non-free and S € E* (A),
then for some C € S.(A), R(C.E%)=xx,

Proor. The same as for 3.4.
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